DRAFT STATUS OF THE RAT RIVER CHARR POPULATION 1989 DRAFT REPORT by TASHA STEPHENSON Department of Fisheries & Oceans Iqualuit, NWT and PIERRE LEMIEUX Department of Fisheries & Oceans Inuvik, NWT revised 6 April 1990 Fisheries Joint Management Committee Report #89-008 3 # TABLE OF CONTENTS | LIST OF FIGURES | ii | |---|--| | LIST OF TABLES | iii | | SUMMARY | iv | | INTRODUCTION | 1 | | STUDY AREA | 5 | | POPULATION ESTIMATES Schaefer estimate Capture Tagging Recapture Calculation Petersen estimate Censuses Spawner and Non-spawners BIOLOGICAL EVALUATION RESULTS AND DISCUSSION POPULATION ESTIMATES Schaefer estimate Petersen estimate BIOLOGICAL EVALUATION | 9
9
10
13
14
15
16
17
18 | | CONCLUSIONS AND RECOMMENDATIONS | 4 1 | | ACKNOWLEDGEMENTS | 43 | | REFERENCES | 4.4 | | APPENDICES | 4.5 | ## LIST OF FIGURES | Figure | | Page | |--------|---|------| | 1. | Map of the Mackenzie Delta showing the Rat River and Fish Creek. | 2 | | 2. | The Rat River and its tributaries, showing loca-
of Destruction City (DC), the tagging site (TS)
and the fish holes on Fish Creek (F). | 7 | | з. | Changes in water levels at Destruction City over the study period. | 8 | | 4. | Location of hoop nets at the tagging site. | 11 | | 5. | Sexually mature charr (current year spawnwers) as a percentage of daily total sample. N=505. | 19 | | 6. | Daily CPUE curve for hoop nets at tagging site.
Breaks indicate periods when nets were removed
because of high water. | 27 | | 7. | Daily CPUE for gillnets at Destruction City (recapture site). | 28 | | 8. | Length-frequency distribution for dead sampled fish. | 33 | | 9. | Length-frequency distribution for live sampled fish. | 34 | | 10. | Age distribution of charr from the domestic fishery. | 36 | | 11. | Mean fork length (mm) at age relationship for Rat River charr (N=401). | 38 | | 12. | Smoothed catch curve for Rat River Arctic charr. The logarithm of each age class frequency is averaged with that of the preceding and succeeding age class and plotted against age (age - 1). | 40 | # LIST OF TABLES | <u>Table</u> | | Page | |--------------|---|------| | 1. | Dates and locations fished with each hoop net. | 12 | | 2. | Daily mark (M), capture (C) and recapture (R) of arctic charr. | 22 | | 3. | Recaptures of tagged arctic charr from the gillnet catches at Destruction City, arranged according to period of tagging (i) and period of recovery (j). | 24 | | 4. | Computed estimates of arctic charr passing Destruction City, using Schaefer's method. | 25 | | 5. | Biological data by age group for Arctic charr (all gear combined) from the Rat River (Mackenzie delta area), 8 August to 18 September 1989. | 32 | | 6. | Biological data by length interval for Arctic char (all gear combined) from the Rat River (Mackenzie delta area), 8 August to 18 September 1989. | r | #### SUMMARY In response to concerns about the status of the Rat River arctic charr population, DFO with support from FJMC conducted a study in 1989 to obtain 1) estimates of the total abundance of the anadromous population (size of the upstream run) and 2) biological data to determine the population's current status. Two different mark-recapture estimation techniques were used: a Schaefer estimate for the upstream run, and a Petersen estimate on the spawning grounds. Charr migrating upstream were live-captured in hoop nets, tagged and measured. The domestic harvest of native fishermen provided tag recaptures for the Schaefer estimate and fish for biological (dead) sampling. Charr on the spawning grounds were censused using a backpack electrofisher and a seine, and released after finclipping. Tag recaptures here were used for the Petersen estimate. Between 2 August and 12 September, 1112 charr were caught in the hoop nets and live-sampled. Of these, 972 were tagged, and 133 tags were recaptured during the period of study. The run peaked about 5 September, but the latter portion was not well assessed because of flood problems. Charr were still being caught by the local fishermen when they pulled their last nets on 22 September. During the Petersen census at the "fish holes" between 4 - 6 October, 690 charr were caught, including 50 tag recaptures. The population estimates are in close agreement with one another, indicating that some confidence in the results is justified. The Schaefer estimate for the truncated run (2 August - 7 September) was 8 928. The "adjusted" estimate of the population which migrated past Destruction City, based on extrapolation to the end of the run, was about 10 000. The Petersen technique yielded an estimate of 11 191 with 95% confidence limits at 8532 and 15 020. Separate estimates of spawners and "silvers" gave a total population estimate of 2184 + 8736 = 10 920. While the population size estimates are a little larger than was expected, analysis of the population structure, based on biological data, indicates heavy fishing pressure. Biological sample data, from 504 charr obtained mainly from the domestic gillnet catch, identified mean and modal length in the range 400-450 mm, corresponding to mean and modal age of about 7 years. Data from 1112 charr live-captured in the (non-selective) hoop nets, disclosed an overwhelming relative abundance (>50% of total catch) of charr in the range 300-350 mm, corresponding to the 4 year age class. Approximately 25% of the population spawn in a given year. After reaching maturity at age 6 or 7, these charr spawn only every second or third year. Mortality rate is very high for age 7 and older fish, and individuals older than 8 years are not abundant. ### INTRODUCTION The Rat River flows out of the Richardson Mountains into the southwest corner of the MacKenzie River Delta, Northwest Territories (Fig. 1). It is one of two major drainage systems in the MacKenzie Delta that support populations of anadromous arctic charr (Salvelinus alpinus). Charr from these populations descend the rivers in the spring and spend the summer feeding in nearshore areas along the Beaufort Sea coast, west of the Delta. They return upstream in August and September to spawning and overwintering grounds in the mountain tributaries. Arctic charr have been traditionally harvested in the western Delta area by native residents of Aktlavik and Fort McPherson. Annual fishing starts with the early movements of charr past Shingle Point on the Yukon north coast (Fig. 1). The precise distributions and degree of segregation of different stocks in this area are not known, but it is assumed that some of the fish taken here are from the Rat River stock. Aklavik residents also harvest from the Rat River stock as the fish migrate past the townsite and into the mouth of the Husky Channel. Fishermen from Fort McPherson take charr at Big Eddy, at the mouth of the Rat River, and at "Destruction City". In the past, large numbers of charr have also been taken from the "fish holes" or overwintering areas on Fish Creek. Figure 1. Map of the Mackenzie Delta showing the Rat River and Fish Creek.(from Gillman and Sparling 1985). A survey of Delta fisheries in 1972 entimated a harvest of 6500 charr from the Rat River population (Jessop et al. 1973). A large portion of this catch likely came from the spawning and overwintering grounds, since anecdotal accounts from area fishermen refer to harvests of 1000 fish in a day from the "fish holes" in the early 1970's. Harvest estimates from 1973 and 1975 were 2600 and 2100 charr, respectively (Low, 1973, unpublished data). It is not known whether fish were harvested at the fish holes in these years. In the late 1970's and early 1980's, area fishermen complained that the charr fishing was poor. In response to this concern, attempts were made by the Department of Fisheries and Oceans (DFO) in 1983 and 1985 to obtain population counts of the stock and assess its ability to sustain contemporary harvest levels (Gillman and Sparling 1985). These attempts were only partially successful due to flash flooding of the river before the count was completed. Annual harvest estimates from 1983 to 1985 dropped from 500 to 400 to 200 charr (Clarke et. al., 1989). These numbers are not standardized to reflect possible differences in fishing effort, but apparently the catch per unit effort, as well as total harvest and overall size of the fish, had decreased. A focused harvest study in 1986 estimated a total of 1000 charr were taken from the Rat River population. Biological data obtained from the 1986 harvest samples indicated heavy overexploitation of the stock (Clarke, et al. 1989). A concurrent assessment of the Big Fish River, the only other major drainage system in the MacKenzie Delta inhabited by arctic charr, showed that the stock there was severely depleted from over-exploitation (Clarke et al. 1989). The Fisheries Joint Management Committee (FJMC), in conjunction with DFO, decided to close the Big Fish River charr fishery in 1987. It was recognized that this closure could result in an increase of fishing pressure by Aklavik residents on the Rat River stock. In 1987, the Arctic Fisheries Scientific Advisory Committee (AFSAC) of DFO recommended that another attempt be made to estimate the abundance of the Rat River charr stock and determine its status, in order to plan a recovery strategy. DFO, with cooperation from the Fort McPherson Hunters
and Trappers Associations (HTAs) and the Fisheries Joint Management Committee (FJMC), proposed another assessment project for 1989. The primary objectives of this study were (1) to estimate the total abundance of anadromous charr in the Rat River by applying two different mark-recapture estimation techniques during the upstream migration and on the spawning grounds, (2) to determine the biological characteristics (size and age composition, mortality rates, etc.) of the population to evaluate its current status. ## STUDY AREA The Rat River flows eastward approximately 93 km from its source in the Richardson Mountains to its outlet at the Husky Channel on the southwest side of the MacKenzie Delta (67 $^{\circ}46$ 'N, 135° 06'W), draining an area approximately 1680 km². can be divided into three distinct segments, determined by topography, as described by Gillman and Sparling (1985): (1) In the mountainous upper region, the water is clear and swift-flowing over gravel and rough cobble substrates. headwater tributaries course in single or braided channels through rugged, boulder-strewn valleys between rocky mountain peaks. Only one tributary, Fish Creek, is known to be used by arctic charr for spawning and overwintering; its shallow, gravelly riffles provide good spawning substrate, and the deeper "holes" are spring-fed, thus inhibiting complete freeze-up and providing winter refugia. (2) The middle segment of the river passes through a "foothills" region characterized by rolling upland tundra cut by the wide river valley. In this region the mainstem varies from a single channel confined within steep banks to a complex, braided network flowing over a wide gravel floodplain. (3) The lowland segment of the river meanders in a single, low-gradient channel through the spruce muskeg typical of the MacKenzie Delta. Here, the banks and substrate are mud, silt and sand, and the water is turbid, clearing only when the mountains are frozen and the water level drops (September). The location of the camp and gillnet sites for this study was at "Destruction City" (Fig. 2), a traditional charr fishing site about 1 km below the first set of rapids marking the boundary between the lowland and foothills. The "tagging site" was located approximately 2 km downstream from Destruction City, about 1 km below any of the gillnets of the domestic fishermen. Typical of relatively short mountainous rivers, flow rates and water levels are highly variable, responding quickly to increases in runoff within the drainage basin. Flash flood events occurred four times, with increasing amplitude, during the course of the project (Fig. 3). Current velocities measured during normal flow conditions ranged from approximately 0.4 ms⁻¹ at the tagging site and camp to 0.8 ms⁻¹ just below the rapids. Depth profiles for the channel at the camp, below the rapids, and at the tagging site are given in Appendix 1. location of Destruction City (DC), the tagging site (TS) and The Rat_River and its main tributaries, showing the fish holes on Fish Creek (F). FIGURE 2. 20 -10 AUGUST FIGURE 3. Changes in water levels at Destruction City over the study period. 25 DATE 30 1 5 10 SEPTEMBER 15 20 23 #### **METHODS** ## POPULATION ESTIMATES Past attempts to obtain total population counts using a standard full-span weir have proven unsuccessful on the Rat River. An alternative to a direct count of the total population is an estimate, based on marking a portion of the population and extrapolating from the subsequent recapture of marked individuals. Two different mark-recapture estimation techniques were used in this study: the Schaefer method for stratified populations and the adjusted Petersen method for a single census (Ricker 1975). The Schaefer method was applied to fish captured at Destruction City during the upstream migration; the Petersen estimate was used subsequently at the fish holes on Fish Creek. ## Schaefer estimate The Schaefer method is designed specifically for populations that are stratified with respect to time. A migrating population of arctic charr in a river is a perfect example of such a stratified population. Since individuals do not all begin the migration simultaneously, the population can, in effect, be considered as a series of partially discrete units, each passing a certain point along the migration route at a different time. The Schaefer method takes advantage of this by assessing the numbers of marked and recaptured fish in separate time periods. ## Capture Hoop nets were used to capture fish for marking. They are a prefered gear for this use primarily because they are non-selective. Furthermore, after the initial installation, they are relatively easy to operate and can be removed relatively quickly in case of sudden flooding. Two basic types were used: a "3-1/2-foot" (3.5' diameter), with round hoops and a double funnel; and two "4-foot" (4' diagonal) square hoop nets, with only a single funnel. Both types had 1" (2.5 cm) mesh and wings approximately 15-20 m long. The "3.5" was prefered on the basis of catch size, depth of water required, sturdiness of construction and ease of handling. The capture location ("tagging site") was a relatively even-bottomed, shallow, straight reach about 2 km below Destruction City. Two net sites were established on opposite sides of the river, slightly staggered, which effectively spanned the whole width of the river (Fig. 4). Another site was set up about 400m below this, in a shallower location that would permit the net to be worked during periods of higher water levels. Under normal conditions, water depth at the lower net was about 0.9 m and about 1.1 - 1.5 m at the upper two nets. Table 1 indicates the number, type and location of hoop nets set each day during the charr run. (The first nets were set on 23 July, but did not start catching charr until 2 August.) The hoop nets could not be fished during the two high water periods between 21-24 August and 7-11 September, nor after 12 September FIGURE 4. Location of hoop nets at the tagging site. TABLE 1. Dates and locations fished with each hoop net. Location codes: TS = tagging site; LTS = lower tagging site; ADC = above Destruction City; OUT = removed from water. A fractional number preceding location code indicates approximate portion of that day fished at that location. Arrows indicate net was moved. | DATE | 3.5' | 4 ' A | 4 'B | DATI | Ε | 3.5' | 4 ' A | 4 'B | |----------|-----------|----------|-----------|----------------------|----|-----------|-------------------------|---------------| | | | | | entra denta denta de | | | 450 CD 450 CD 650 660 6 | | | AUG | 2 TS | - | - | AUG | 25 | LTS | 480 | _ | | ; | 3 TS | .5TS | - Palisa | | 26 | LTS | .7TS | _ | | • | 1 TS | TS | _ | | 27 | LTS | TS | .3TS | | | 5 TS | TS | • | | 28 | LTS | TS | TS | | (| 5 TS | TS | .3ADC | | 29 | LTS | TS | TS | | » | 7 TS | TS | ADC | | 30 | LTS | TS | \mathtt{TS} | | 1 | 3 TS | TS | ADC | | 31 | LTS | TS | .7TS>.3ADC | | 9 |) TS | TS | ADC | | | | | | | 10 |) TS | TS | ADC | SEPT | 1 | LTS | TS | ADC | | 1: | L TS | TS | ADC | | 2 | LTS | .7TS>OU | r ADC | | 12 | 2 TS | TS | ADC | | 3 | LTS | _ | ADC | | 13 | 3 TS | TS | ADC | | 4 | LTS | | ADC | | .14 | TS | TS | ADC | | 5 | LTS | _ | ADC | | 19 | 5 TS | TS | ADC | | 6 | LTS | - | ADC | | 1 | 5 TS | TS | .7ADC>OUT | | 7 | .7LTS>OUT | .3TS>OU | r.7ADC>OUT | | 1 | 7 .7TS | TS | | | 8 | ences. | **** | _ | | 18 | 3 .3LTS | TS | 6600 | | 9 | _ | 4000 | - | | 19 |) LTS | TS | 6000 | | 10 | _ | _ | _ | | 20 |) LTS | TS | - | | 11 | .5LTS | - | | | 2 | .7LTS>OUT | .3TS>OUT | esso | | 12 | .7LTS>OUT | | _ | | 2: | _ | 400 | - | | | ** END | OF FISH | ING ** | | 23 | - | _ | - | | | | | | | 2 | 1 | _ | _ | | | | | | when the water level suddenly rose again. Freeze-up began before the level dropped sufficiently to permit resumption of netting. ## Tagging Arctic charr were marked with orange plastic Floy ("spaghetti") tags numbered in the FJMC 70 000 - 71 000 series. Tags were inserted with a Dennison tagging gun between the basal pterygiophores below the posterior half of the dorsal fin. Tags and tagging gun/needle were sterilized in a strong (approx. 20%) Dettol solution between tagging each fish, to prevent the spread of infectious pancreatic necrosis virus. Initially, tagged fish were measured for fork length and weighed, but weighing was discontinued after about 350 samples because it was too timeconsuming and caused greater stress for the unanaesthetized animals. Tagged fish which did not immediately dart away when returned to the water were held until completely recovered. Only 87% of the charr captured in the hoop nets were tagged. Some individuals less than 300 mm were released untagged, since they were unlikely to be recaptured in the gillnets. Tagging was limited to 50-60 fish per day from 3 September until the nets were pulled on 7 September. Untagged fish were measured for fork length and released. ## Recapture The recovery of marked fish was accomplished with the gillnet catch of the two local fishermen at Destruction City. These men fished continuously from 8 August to 22 September with 3.5" and 4.5" gillnets. The number of nets fishing on a given day varied from 2 or 3 at the beginning and end of the season, to 11 at about the peak of the run. At the beginning of the season and during the peak period, one of the 4' hoop nets was set just below the rapids above Destruction City, to provide additional recaptures. This proved to be of little value, since the net caught very few charr. Sufficient recaptures were obtained, however, from the domestic harvest. Although the gillnets are size selective, the accuracy of the Schaefer method is not compromised as long as either the capture or the recapture gear is non-selective. An additional criterion that must be met is that the tagged fish be randomly distributed within the group or stratum from which they are recaptured. The tagging site was at least
1 km downstream from the first recapture net, and almost 2 km from the majority of the nets. This was presumed to be far enough away to allow for random remixing of the tagged fish with the rest of the concurrent migrants. ## Calculation To calculate the Schaefer estimate, both the marking and recovery of fish must be divided into appropriate time intervals. In this case, the data divide out more naturally into 6-day periods rather than an arbitrary 7-day week. The mark and recapture information for each time period is then set up in a table of double entry and estimates calculated for each cell, based on the example published by Schaefer (1951) and presented by Ricker (1975). The total population is calculated from the equation: $$N = (R_{ij} \quad \frac{M_i}{R_i} \quad \frac{C_j}{R_j})$$ where: N = total population R_{ij} = number of fish marked in the ith marking period which are recovered in the jth recovery period M_i = number of fish marked in the ith marking period R_i = total recaptures of fish marked in the ith period of marking R_j = total recaptures of marked fish during the jth recovery period C j = number of fish caught and examined in the jth period of recovery ## Petersen estimate The Petersen method for a single census is a straightforward extrapolation of the proportion of recaptured marked fish in a single census sample from a population with known number of randomly-distributed marks. The modified formula that gives the best unbiased estimate is described by Ricker (1975): $$N = \frac{(M+1)(C+1)}{(R+1)}$$ where: N = total population M = number of marked fish in the population C = number of fish caught in the census sample R = number of recaptured marks in the census sample Ricker (1975) provides a table of information for determining the 95% confidence intervals for Petersen estimates. This table was used to calculate upper and lower limits for each estimate, based on the 95% confidence limits for R. Two separate Petersen population estimates were originally proposed, both to be based on census samples taken at the fish holes in October, when it was confirmed by aerial survey that all migrating charr had reached that destination. For one Petersen estimate, the tags served as marks. The second estimate was to be based on fin clips administered during the first census. This required that two separate censuses be completed at the fish holes: the first to mark (clip the adipose fin) all untagged charr and to recapture tagged charr; the second to recapture the newly marked (finclipped) fish and augment the tag recoveries. ## Censuses The first complete census was carried out over 3 days between 4-6 October, and thoroughly covered approximately 7 km of Fish Creek upstream from its mouth. The lower section, consisting of shallow, boulder-strewn, braided channels, was sampled with a backpack electrofisher; the deeper pools in the upper portion were seined with a 45 m, 6 cm mesh, modified herring net (monofilament). All untagged charr were finclipped. Recaptured tag number codes were recorded, as was the number of recaptured fin clips. All charr were recorded as male or female spawners or "silvers" (sea-run, not current year spawners). The sex of silvers could not be easily identified. An attempt at the second census was postponed because of weather until 20 October, and then aborted after only an hour's sampling, again due to bad weather. A final trip to Fish Creek took place on 25 October, but by this date, the extent of ice overhang along the edges of the stream made it practically impossible to fish. Only 6 fish were caught. The second Petersen estimate, using the finclipped fish, was therefore not feasible. The finclips were useful, nonetheless, for determining an accurate count of untagged fish caught during tag recoveries for the first Petersen estimate. ## Spawners and Non-spawners Separate Petersen estimates were calculated for spawning and non-spawning charr in Fish Creek, using the same tag recapture information as the total population estimate. There was no difficulty distinguishing spawners and "silvers" captured in the fish holes, so the number in the sample (C) and number recaptured (R) were known for each group. When the fish were tagged during their upstream run, however, current year spawners had not yet developed the secondary (external) sexual characteristics, so they could not be differentiated from the non-spawners. Thus, the number of spawners tagged could not be separated from the total tagged. To determine this, an estimate was made based on information obtained from the biological sampling. It was known previously that mature charr (current year spawners) generally return earlier, at the beginning of the upstream run, than do immature and resting individuals. From a sample of 505 fish caught at Destruction City, the percentage of mature fish in each day's sample dropped sharply during the last week of August (Fig. 5). Therefore, all the fish tagged prior to 26 August (200) were assumed to be spawners, and all fish tagged on or after that date were assumed to be "silvers". Of course, some overlap occurred, but likely balanced out. The number of marked spawners and silvers available for recapture (M) was obtained by subtracting from each group the appropriate number of tagged fish that had been removed by the domestic harvest. ## BIOLOGICAL EVALUATION In addition to the live-captured charr measured for fork lengths, biological ("dead") samples were taken from the domestic harvest at Destruction City. The Kay family who traditionally fishes here was extremely cooperative in providing fish for sampling. It is thanks to them that a very large, chronologically continuous sample was obtained from 8 August to 18 September. Sexually mature chair (current year spawners) as a percentage of daily total sample. N=505. FIGURE 5. A few dead samples were also obtained from the hoop net catches, for the smaller size classes that were not vulnerable to the gillnets. Data gathered from the dead samples consisted of fork length (+5mm), round weight (+50g), sex and stage of maturity (determined by gross examination of the gonads). Sagittal otoliths were collected for subsequent aging by DFO personnel in Winnipeg. Two separate length frequency distibutions were computed: from the live-sampled hoop net catch (non-selective) and from the harvest (dead) samples. Standard biological data were calculated by DFO-Winnipeg from the total dead sample, including mean lengths and weights, condition factor (K), length-weight relationship, length-at-age relationship, etc. Mortality rates were calculated from "smoothed" age-frequency distributions (catch curves). Smoothing was accomplished by averaging the logarithm of frequency for a given age class with the preceding and succeeding age class frequencies. #### RESULTS AND DISCUSSION #### POPULATION ESTIMATES ## Schaefer estimate Between 2 August and 12 September, 1112 arctic charr were caught in the hoop nets and live-sampled. Data for these fish are listed in Appendix 2. Of these, 972 charr were tagged. A total of 1020 charr were captured by the native fishermen at Destruction City, of which 987 were caught during the period used for the Schaefer estimate. From this harvest, 133 tags were recovered. The daily mark and recapture data used for the Schaefer estimate are recorded in Table 2. These data were divided into 6-day time periods and the appropriate totals for each time period were compiled into Schaefer's double entry table, Table 3. Table 4 gives the computed estimates for each cell of the double entry table, estimates of the number of charr passing Destruction City during each time period, and the estimate for the total population. The final figure of 8928 represents the Schaefer estimate of the number of charr passing Destruction City from the beginning of the run on 2 August until 12 September. Due to the high water after 7 September, mark-recapture sampling of the run was incomplete. Obviously the run was still in progress, but it is an open question as to how many more fish passed by after tagging was discontinued. According to the TABLE 2. Daily mark (M), capture (C) and recapture (R) of arctic charr. M = number of charr marked (tagged) each day; C = number of charr caught each day in gillnets at recapture site (Destruction City); R = number of tagged charr recaptured each day in gillnet catch. Data are divided into 6-day time periods used in the Schaefer estimate: i = tagging period; j = recapture period (time lag of one period = 6 days). The last four days were not included in calculations for the Schaeffer estimate. | _T | IME PERIOD | DATE | M | C | R | |----|--------------|--------|-------|------|----------| | | | | | | | | | i1j- | AUG 2 | 1 | _ | - | | • | 11 | 3 | 1 | _ | ian | | | 11 | 4 | 1 | Name | Ecito | | | II | 5 | 3 | • | - | | | 11 | 6 | 8 | _ | - | | | 11 | 7 | 9 | • | e appa | | | i2j1 | AUG 8 | 1 | 1 | 1 | | | 11 | 9 | 6 | 6 | 2 | | | 11 | 10 | 2 | 1 | a | | | 11 | . 11 | 5 | 2 | _ | | | 11 | 12 | 9 | 6 | 1 | | | 11 | 13 | 14 | 7 | 2 | | | i 3j2 | AUG 14 | 25 | 11 | 3 | | | 11 | 15 | 37 | 32 | 12 | | | 11 | 16 | 16 | 8 | 3 | | | 11 | 17 | 12 | 14 | 3 | | | 11 | 18 | 12 | 23 | 8 | | | 11 | 19 | 18 | 15 | 6 | | | i 4j3 | AUG 20 | 7 | 12 | 3 | | | 11 | 21 | 6 | 15 | 2 | | | 11 | 22 | - | 10 | **** | | | 11 | 23 | eno. | 2 | | | | 11 | 24 | · ••• | 2 | 1 | | | u . | 25 | 7 | - | _ | | | | | | • | | TABLE 2: continued | | | | M | C | R | |---|--------------|---------|----------|----|----| | | | | | | | | | i5j4 | AUG 26 | 4 | 2 | 1 | | | 11 | 27 | 24 | 11 | 2 | | | 11 | 28 | 27 | 16 | 8 | | | 11 | 29 | 53 | 22 | 10 | | | 11 | 30 | 79 | 15 | 9 | | 5 | 11 | 31 | 64 | 13 | 5 | | | i6j5 | SEPT 1 | 74 | 19 | 3 | | | 11 | 2 | 121 | 17 | 3 | | | II . | 3 | 46 | 33 | 9 | | | 11 | 4 | 60 | 45 | 8 | | ٠ | 11 | 5 | 66 | 54 | 10 | | | 11 | 6 | 65 | 70 | 6 | | | i 7j6 | SEPT 7 | 53 | 64 | 3 | | | 11 | 8 |
<u>-</u> | 65 | 3 | | | 11 | 9 | - | 59 | 1 | | • | . 11 | 10 | - | 51 | 1 | | | 11 | 11 | 9 | 68 | - | | | 11 | 12 | 27 | 69 | 1 | | | i-j7 | SEPT 13 | _ | 50 | 2 | | | 11 | 14 | _ | 28 | - | | | 11 | 15 | _ | 12 | 1 | | | 11 | 16 | - | 6 | - | | | 11 | 17 | ••• | 24 | _ | | | H , | 18 | _ | 7 | _ | | | | SEPT 19 | _ | 10 | _ | | | | 20 | - | 9 | _ | | | | 21 | - | 9 | - | | | | 22 | - | 5 | | period i, R_j = tagged fish recovered in recovery period j; C_j = total fish recovered in recovery period j. Each cell entry corresponds to R_{ij} = number of fish recovered in recovery period j that were tagged in tagging period i. The numbers for M_i , R_j , and C_i correspond to the totals for M_i , R_i , and C_i in Table 2 for the designated time periods. To obtain the numbers for each cell entry (R_{ij}) , each tagged fish had to be cross-referenced with the tagging and recapture data in Appendix 2 to determine the City, arranged according to period of tagging (i) and period of recovery (j). R_i = tagged fish recovered from tagging period i; M_i = total fish tagged in tagging Recaptures of tagged arctic charr from the gillnet catches at Destruction correct tagging and recovery period to which it belonged. TABLE 3. | PERIOD OF | | | PERIC | OD OF 1 | PERIOD OF TAGGING (i) | ; (i) | | | | | ပ် | | |---------------------|-------|------|-------|---------|-----------------------|-------|------|-----|----------------|-----|----------------|--| | RECOVERY (j) | 1 | . 2 | (n | 4 | .c | .9 | 7 | | R _j | ن | R _j | | | FT. | 2 | 4 | | | | | | | 9 | 23 | 3.83 | | | 7 | | 3 | 32 | | | | | | 35 | 103 | 2.94 | | | ٣ | | | 4 | 2 | | | | | 9 | 41 | 6.83 | | | 4 | | | | ٦ | 34 | | | | 35 | 79 | 2.26 | | | Ŋ | | | | | 3 | 36 | | | 39 | 238 | 6.10 | | | 9 | | | | | | 2 | 7 | | თ | 376 | 41.78 | | | 7 | | | | | | IJ | 7 | | т | 127 | 42.33 | | | ′ . | | | | | | | | | II | II | | | | ж | 7 | 7 | 36 | М | 37 | 39 | Q | li. | 133 | 987 | | | | ${ m M_{ ilde{i}}}$ | 23 | 37 | 120 | 20 | 251 | 432 | 89 | II | 972 | | | | | $M_{ m i}/R_{ m i}$ | 11.50 | 5.28 | 3,33 | 6.67 | 6.78 | 11.08 | 9.89 | TABLE 4. Computed estimates of arctic charr passing Destruction City, using Schaefer's method. (See equation in Methods, p. 15.) Total of all cell entries yields total population estimate. | PERIOD OF | | -4 | PERIOD | PERIOD OF TAGGING (i) | GING | (i) | | | |--------------|----|-----|--------|-----------------------|------|------|--------|--------| | RECOVERY (j) | · | 2 | 3 | 4 | വ | 9 | 7 | TOTAL | | í | | | | | | | | | | Н | 88 | 81 | | | | | | 169 | | 7 | | 47 | 313 | | | | | 360 | | ო | | | 91 | 91 | | | | 182 | | 4 | | | | 15 | 521 | | | 536 | | വ | | | | | 124 | 2433 | | 2557 | | Ø | | | | | | 926 | 2892 | 3818 | | 7 | | | | | | 469 | 837 | 1306 | | | | | | | | | | 11 | | TOTAL | 88 | 128 | 404 | 106 | 645 | 3828 | 3729 = | = 8928 | catch per unit effort (CPUE) data for the hoop nets, shown in Figure 6, it appears the peak of the run occurred on 5 September. Similar approximate catch per unit effort data for the gillnets (Fig. 7) shows a more protracted peak, lagging a day or more behind, and charr were still being caught until the last nets were pulled on 22 September. Reports from local fishermen indicate that some charr are caught right up until freeze-up. To obtain a more complete estimate of the total population, including those fish moving upstream after 7 September, it is only possible or to extrapolate from the CPUE curves in Figures 6 and 7. Extrapolation is complicated because the duration of the peak and the characteristics of the tail end of the run are not known. Additionally, the effect of high water on the fishing efficiency of the gillnets is not known, although it is well-accepted by the native fishermen that decreased catches are correlated with high water. A further caution against extrapolating from the gillnet CPUE data is that these data are only approximate, since the number of nets was not monitored closely, and nets were occasionally set or removed without being reported. In spite of these cautions, however, for purposes of gaining an estimate of the likely number of charr in the latter portion of the run, the hoop net CPUE curve was extrapolated based on the CPUE curve for the gill nets. Thus it was assumed that the hoop # DAILY CATCH PER UNIT EFFORT FIGURE 6. Daily CPUE curve for hoop nets at tagging site. Breaks indicate periods when nets were removed because of high water. FIGURE 7. Daily CPUE for gillnets at Destruction City (recapture site). net catch would have shown a "trailing off" period similar to the beginning of the run. This extrapolation of the curve for the period after 12 September was used simply to identify comparable periods within the Schaefer estimate table. Therefore, it is surmised that the peak run was followed by about two weeks comparable to two periods prior to the run (i5j4 and i3j2). (The period i4j3 was not used because this was also an abnormal period of high water.) Using the approximate estimates in Table 4 for each of these time periods, a rough estimate of the number of additional charr, therefore, is: $$(i5j4) + (i3j2)$$ = $(650) + (400)$ = 1050 If this is added to the estimate obtained by Schaefer's method, the resulting population estimate for Rat River charr is about 10 000. ## Petersen estimate During the census at Fish Creek (4-6 October), 690 charr were captured (C). Because all untagged charr were finclipped, all fish that were captured more than once during the census could be recognized and excluded from this total. Exactly 50 tagged charr were recaptured (R). The total number of tagged fish available for recapture, assuming no mortality other than the domestic harvest, was 972 - 147 = 825 (M). (The number of tags removed by the harvest includes those recovered in locations other than Destruction City.) Therefore, the Petersen estimate is: $$N = \frac{(M+1)(C+1)}{(R+1)} = \frac{(826)(691)}{(51)} = 11 191$$ The lower and upper 95% confidence limits are 8532 and 15 020. These results substantiate the findings of the previous method. The Schaefer estimate for the portion of the run prior to the flooding lies within the 95% confidence interval for the Petersen estimate. The "adjusted" Schaefer estimate, although crude, is close to the Petersen estimate. It was apparent from sampling for this census that spawners and non-spawners are spatially segregated in Fish Creek. In the lower reaches, the catch comprised exclusively "silvers". All of the current year spawners and only a few silvers were captured in the upper, deeper pools. Only four "residual" charr were found. Separate Petersen estimates were calculated for spawners and silvers. Of the 690 charr captured in the census, 187 were spawners. It was estimated (see Methods, p.15) that approximately 200 current year spawners had been tagged during the upstream run. Tag numbers recorded from the domestic harvest indicated that 50 of these tagged spawners had been removed, leaving only 150 tagged spawners available for recapture. Twelve of these were caught during the census. The number of tagged silvers remaining after the domestic harvest was approximately 675. Thus the Petersen estimates for each group yielded: Spawners: $$N = \frac{(M+1)(C+1)}{(R+1)} = \frac{(151)(188)}{(13)} = 2184$$ (95% confidence interval: 1290 - 3940) Silvers: $$N = \frac{(M+1)(C+1)}{(R+1)} = \frac{(676)(504)}{(39)} = 8736$$ (95% confidence interval: 6400 - 12 260) If these are totalled, the population estimate obtained is 10 920. This close concordance with the other population estimates lends confidence to the separate estimates for spawners and silvers and increases confidence in the overall population estimates. Based on the above calculations, the approximate ratio of spawners to non-spawners in Fish Creek is 25%. #### BIOLOGICAL EVALUATION Raw data, including fork length, weight, sex and maturity, for 506 "dead-sampled" charr are compiled in Appendix 3. Standard biological summary data computed by DFO-Winnipeg from the dead samples are presented in Tables 5 and 6. Data by age interval (Table 5) are based on the whole sample (N=401); length-related data (Table 6) are from a subsample (N=504). The length frequency distribution from these data is presented in Figure 8. Length range is from 231 mm to 601 mm. Modal length is in the interval 400-450 mm, with mean at 414 mm. . Biological data by age group for Arctic charr (all gears combined) from the Rat River (MacKenzie delta area), 8 August to 18 September 1989. Table 5 | 1 | | 1 | ·
1 | 1 | |----------|--------|--------------|--|--------------------------| | | ; | MAT | 33
0
7
7
7
25
55
55
88
88
82
94
100
100 | | | | | × | 1.19
1.22
1.20
1.20
1.16
1.06
1.09
1.07 | 1.15 | | | | (G) | 180
102
167
199
273
273
259
259
230 | 367 | | COMBINED | | WEIGHT (G) | 300
444
444
502
603
840
1051
1186
1312
1658 | 846 | | J | | MM) | 52
19
37
39
39
28
28
68 | 99 | | | | LENGTH (MM) | 285
329
343
367
414
457
457
534 | 413 | | | | -
 z | 3
10
44
81
77
77
38
17
2 | 401 | |
 | | MA T | 0
0
3
23
27
57
57
100
100 | | |
 | | × | 1.03
1.03
1.03
1.03 | 1.13 | | | | (G)
SD | 137
191
191
252
252
252
95 | 344 | | | L L MA | WEIGHT (G) | 250
430
499
616
854
1041
1226
1236
1325 | 885 | | | | SD SD | 1 24 4 4 5 1 1 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 62 | | | | MEAN SE | 290
323
343
372
418
455
482
493
505 | 422 | | | | | 101
101
101
101
101
101 | 305 | | | | % M
T A M | 50
0
13
30
30
67
50
100
100 | | | | | × |
1.27
1.24
1.24
1.24
1.07
1.07
1.34
1.30 | 1.19 | | | | (G)
SD | 247
96
111
201
451
398
133 | 114 | | | MALES | WEIGHT (G) | 325
450
507
507
583
792
1105
853
1650 | 725 | | | | MM)
SD | 744
155
30
30
70
70
70
70
70
70 | 72 | | | | LENGTH(MM) | 283
332
343
359
397
464
445
601 | 386 | | | | z | 27 12 12 12 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 94
AGE 6 | | | | AGE
(YR) | 6470 0 0 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 | TOTAL
MEAN
MEAN AC | . Biological data by length interval for Arctic charr (all gears combined) from the Rat River (MacKenzie delta area), 8 August to 18 September 1989. Table 6 | | | 1 | 1 | 1 | | | | | | | | | | • | | | | | |---|--|------|---|---|--|--|---|---|--|-------------------------------------|--------------------------------------|---|---|--|---|---------------------------------|--|-------------------------------------| | i
C | | MAIN | v | | | | | FEMALES | LES | | | 9 | | COM
THUND I | COMBINED
M) WEIGHT | (5) | | 3° | | INTERVAL
(MM) | LENGTH(MM
N MEAN | | WEIGHT (G) | (S) | × | %
MAT | z | MEAN MEAN | MEAN | SS | × | MAT | z | MEAN | MEAN | SD | * | MAT | | 200
200
300
300
4 400
500
600 | 1 231
4 283
41 335
29 364
19 420
13 468
7 526
1 566 | | 150
213
492
595
778
1115
1596
2070 | 23
108
72
159
218
231
255 | 1.22
0.94
1.30
1.23
1.09
1.10 | 100
25
7
7
63
62
71
100 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 282
336
336
375
474
474
515 | 209
495
627
627
1127
1484 | 52
80
68
151
136
205 | 0.92
1.30
1.19
1.06
1.08 | . 0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 13 1 13 1 13 1 13 1 13 1 13 1 1 1 1 1 | 231
283
335
371
425
473
517
601 | 150
210
494
616
849
1125
1502
2070
1650 | 255
255
166
210
255 | 1.22
0.93
1.30
1.20
1.10
1.10
0.76 | 100
8 2 7 7 7 992 992 991 1000 1 | | TOTAL | 117 386 | | 724 | 393 | 1.18 | ' | 385 | 423 | 889 | 334 | 1.13 | | 504 | 414 | 849 | 356 | 1.14 | (All Gears Combined) ## LENGTH INTERVAL (mm) FIGURE 8. Length frequency distribution for dead sampled fish. # LENGTH FREQUENCY DISTRIBUTION FIGURE 9. Length-frequency distribution for live-sampled arctic charr in Rat River. N=1112 Length frequency distribution was also examined for the 1112 live-sampled charr from the non-selective hoop net catch. This distribution, shown in Figure 9, is strikingly dissimilar from the previous one, most noticeably in the very large proportion of fish (>50%) in the 300-350 mm interval. If this category were decreased to about a third, the overall distribution would resemble the slightly bimodal pattern from the dead sample. The large discrepancy between the two distributions likely results from the size selectivity of the gillnets used to obtain most of the dead sample. These nets do not readily capture the smaller fish. The hoop nets, however, are not selective with respect to size and therefore catch a more representative sample of the whole population. This is an illustrative example of how biological evaluations gleaned from harvest data may be biased and may give an incomplete representation of the status of a population. In this case, the relatively large proportion of 4-5 year olds would have gone completely unnoticed, if only the dead sample data were available. The age frequency distribution (Fig. 8B) from a subsample of the dead sample indicates a modal age of 7 years. The computed mean is 6.8 yr, with a range from 3 to 12. The appearance of 3 year olds in the sample is somewhat surprising, since it is generally maintained that charr from this region do not begin anadromous migrations until 4 years of age (ref). Again, it should be noted that these data were obtained from the selective harvest, which does not include many of the FIGURE 10. Age distribution of charr taken from the domestic fishery. smaller, younger individuals. Furthermore, the subsample used for aging was not selected completely randomly and, therefore, it is not necessarily representative of the whole sample. The slightly bimodal length frequency distribution of the dead sample is not reflected in the age distribution. A plot of the length-at-age relationship, as shown in Figure 11, is useful for identifying age characteristics of the population from length frequency data. Based on this plot and the length frequency histogram for the live-sampled hoop net catch (Fig. 9), the very large modal length group can be identified as the 4 year age class. The mean length (362 mm) for this sample corresponds to 5 years of age. Sexual maturity appears to be first reached at about age 6 (Table 5, ignoring the abberant 3 year old). Data representing the percent mature versus length category (Table 6) indicate that over 50% of charr in the length category 400-450 mm are mature (current year spawners). This category corresponds to 6-7 year old fish. All older age classes had much higher proportions of current year spawners. Observations of gonads during sampling indicated that some fish may "rest" for more than one year between spawning. Three distinct stages of egg development in females were noted relating, presumably, to current year spawners, next year's spawners, and fish that would not spawn until at least the year after next. Some fish in the latter category were large, older individuals, so it does not seem likely that they were immature. Figure 11. Mean fork length (mm) at age relationship for Rat River charr (N = 401). The ratio of females to males in the dead sample is 3.3 : 1. Of the mature spawners only (N=244), the ratio is 6.2 : 1. Female to male ratio at the fish holes in Fish Creek in October was 3.5 : 1. This information might indicate that males may tend not to migrate during the year of spawning. It appears, however, that females do. Condition factor (K) is generally high, especially for the younger age classes (Table 6). This corresponds with the general observation in the field, that all fish appeared in very good condition, with remarkable amounts of fat. Mean condition factor is 1.14 (N=504). Mortality estimates from the smoothed catch curve (Fig 11) are quite high: instantaneous mortality (Z) for age classes 7-12 (N=115) is 0.78. Annual mortality rate is 53%. FIGURE 12. Smoothed catch curve for Rat River arctic charr. The logarithm of each age class frequency is averaged with that of the preceding and succeeding age class and plotted against (age - 1). #### CONCLUSIONS AND RECOMMENDATIONS #### POPULATION STATUS The results of this study are indicative of a population that is heavily fished. The size of the population may be a little larger than was expected, but the composition, or population structure, reflects the harvest pressure. Individual fish are in good condition, and there does not appear to be problems with reproduction. The length frequency data from the live-captured sample show an abundant 4 year age class, indicating good potential recruitment. However, older larger fish are much less abundant. Even in the dead sample, which "missed" the majority of the age 4 class, the relative abundance of fish older than 8 years is low. This frequency distribution pattern (many small fish, few large fish) is reminiscent of the "fishing up" pattern associated with overexploited populations that are selectively harvested for the larger individuals, as with gillnet fisheries. As larger individuals get rarer, fishing pressure is concentrated on progressively smaller individuals. The abundant age 4 class provides good potential for strengthening the stock, if they are successfully recruited into the reproductive population. However, age at first maturity is 6 or 7 years, and mature individuals spawn only every second or third year. The very high mortality rate after 7 years of age means that the majority of these fish may be able to spawn only once, if at all, before they are killed. In order to allow these fish more opportunity to reproduce, only the older (larger) fish should be harvested. Using 4.5" mesh gillnets would help by allowing more of the 6 - 7 year old fish to escape and have a chance to spawn. Another strategy to help prevent the depression of this stock is to forgo all fishing at the "fish holes". This is where the charr are most vulnerable. The large harvest from the fish holes in the early 1970's may have been the main factor contributing to the decline of the stock. Similar indications relate to the Big Fish River charr stock, which was fished heavily on the spawning grounds. #### ACKNOWLEDGEMENTS Our appreciation is extended to the FJMC for their financial support of this project. We would like to thank Richard Martin, Selwyn Kaye and Joe Vittrekwa for their assistance in the field. A special thanks is extended to the Kaye family who made a significant contribution to the program and provided very welcomed company at the field camp. Finally, we would like to thank the community of Ft. McPherson for supporting our project and participating in the planning and management discussions. #### REFERENCES -
Clarke, R.McV., L. Johnson, G.D. Koshinsky, A.W. Mansfield, R.W. Moshenko, and T.A. Shortt. 1989. Report of the Arctic Fisheries Scientific Advisory Committee for 1986/87 and 1987/88. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2015, Winnipeg, MB. - Gillman, D.V. and P.D. Sparling. 1985. Biological data on arctic charr, <u>Salvelinus alpinus</u> (L.), from the Rat River, Northwest Territories, 1983. Canadian Data Report of Fisheries and Aquatic Sciences No. 535, Winnipeg, MB. - Jessop, C.S., T.R. Porter, M. Blouw, and R. Sopuck. 1973. Fish Resources of the Mackenzie River Valley. Special Report: An intensive study of the fish resources of two mainstem tributaries. Canada Task Force on Northern Oil Development, Environmental-Social Program Northern Pipelines, Ottawa, ON. - Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada No. 191, Ottawa, ON. - Schaefer, M.B. 1951. Estimation of the size of animal populations by marking experiments. U.S. Fish and Wildlife Service Fisheries Bulletin No. 52: 189-203. APPENDIX 1. Rat River depth profiles and current velocity at three sites in the study area (Fig. A1). Depth (z) measured at approximately 2 m intervals across transect distance (d). # A) BELOW RAPIDS - (FIG. A1-A) - measured on 25 August 1989 TRANSECT 1: -depth (z) measured at distance (d) from E (cut bank) to W (slowing) across gravel bar: | d (m) | z (m) | substrate | d (m) | z (m) | substrate | |-------|-------|--------------|-------|-------|-----------| | 0 | 0 | silty,stumps | 22 | 1.0 | rocky | | 1 | 0.8 | ii - | 24 | 1.0 | 11 | | 2 | 0.9 | 7.0 | 26 | 1.1 | silty | | 3 | 1.0 | rocky,silty | 28 | 1.0 | 11 | | 4 | 0.8 | n i | 30 | 1.1 | 11 | | 6 | 0.8 | rocky | 32 | 1.0 | 11 | | 8 | 0.8 | ī | 34 | 1.0 | 11 | | 10 | 0.8 | 11 | 36 | 1.0 | 11 | | 12 | 0.7 | 18 | 38 | 1.0 | ** | | 14 | 0.7 | 11 | 40 | 1.0 | 11 | | 16 | 0.7 | tt į | 42 | 1.0 | #1 | | 18 | 0.8 | 11 | 44 | 0.9 | 11 | | 20 | 0.9 | II . | 45 | 0 | n | -current velocity (v) measured at distance (d) ${\tt E}$ to ${\tt W}$: | d (m) | v (m/s) | |-------|---------| | | | | 15 | 0.87 | | 22 | 0.83 | | 30 | 0.74 | | 38 | 0.64 | A) BELOW RAPIDS - (FIG. A1-A) - measured on 25 August 1989 TRANSECT 2: -depth measured from E bank to W sand bar: | d (m) | z (m) | substrate | d (m) | z (m) | substrate | |-------|-------|------------|-------|-------|------------| | 0 | 0 | silty sand | 22 | 1.5 | silty sand | | 2 | 0.3 | · 11 _ | 24 | 1.5 | 11 | | 4 | 1.1 | 11 | 26 | 1.4 | 11 | | 6 | 1.6 | 11 | 28 | 1.3 | PT | | . 8 | 2.0 | 11 | 30 | 1.2 | H | | 10 | 1.9 | 11 | 32 | 1.0 | tt : | | 12 | 1.8 | 11 | 34 | 0.8 | 11 | | 14 | 1.7 | 11 | 36 | 0.6 | 11 | | 16 | 1.7 | 11 | 38 | 0.3 | 11 | | 18 | 1.6 | TI . | 40 | 0 | 11 | | 20 | 1.6 | TT . | | • | | -current velocity measured E to W: | d (m) | v (m/s) | |-------|---------| | | | | 15 | 0.57 | | 25 | 0.60 | FIGURE Al. Depth profile sites: rapids (A), Destruction city (B), and tagging site (C). FIGURE Al-A. Depth profile transects below rapids. B) AT DESTRUCTION CITY - (FIG. A1-B) - measured on 19 Sept 89 TRANSECT 1: -depth measured from sloping N bank (camp side) to cut S bank | d (m) | z (m) | substrate | d (m) | z (m) | substrate | |-------|-------|------------|-------|-------|-----------| | 0.5 | 0.2 | silty sand | 24 | 3.4 | silty san | | 1 | 0.4 | īı | 26 | 3.7 | ii | | 2 | 0.5 | 11 | 28 | 3.8 | 77 | | 4 | 0.8 | 11 | 30 | 4.0 | 11 | | 6 | 1.2 | 11 | 32 | 4.2 | ff. | | 8 | 1.5 | 11 | 34 | 4.1 | 11 | | 10 | 1.7 | II . | 36 | 3.7 | ft · · | | 12 | 2.0 | 11 | 38 | 3.5 | 11 | | 14 | 2.2 | 11 | 40 | 2.7 | 11 | | 16 | 2.4 | 11 | 42 | 1.8 | 11 | | 18 | 2.5 | 11 | 43 | 1.0 | 11 | | 20 | 2.9 | n | 44 | 0.5 | Ħ | | 22 | 3.3 | 11 | | - 7 - | | -current velocity measured N to S: | v (m/s) | |---------| | | | 0.45 | | 0.38 | | | FIGURE Al-B. Depth profile transect at Destruction City. ### C) AT TAGGING SITE - (FIG. A1-C) TRANSECT 1: measured on 7 Sept 89, beginning of a flood -depth measured from sloping N bank to steep S bank | d (m) | z (m) | substrate | d (m) | z (m) | substrate | |-------|-------|---------------------------|-------|-------|------------| | 1 | 0.1 | silty sand | 29 | 2.0 | silty sand | | 2 | 0.3 | îi . | 31 | 1.9 | 11 | | 3 | 0.4 | 11 | 33 | 1.8 | 11 | | 5 | 0.6 | 11 | 35 | 1.6 | n . | | 7 | 0.9 | 11 | 3.7 | 1.6 | 11 | | 9 | 1.2 | 11 | 39 | 1.6 | 11 | | 11 | 1.4 | 11 | 41 | 1.5 | 11 | | 13 | 1.6 | 11 | 43 | 1.3 | ļi . | | 15 | 1.8 | 11 | 45 | 1.2 | 11 | | 17 | 1.8 | II | 46 | 1.1 | 11 | | 19 | 1.8 | n | 47 | 0.8 | 11 | | 21 | 1.8 | \mathbf{n}_{\downarrow} | 48 | 0.5 | 11 | | 23 | 1.9 | n | 49 | 0.3 | 11 | | 25 | 2.0 | 11 | 50 | 0 | n | | 27 | 2.0 | II . | | J | | -current velocity measured approximately mid-channel just above net sets, 250 m downstream from transect 1 | C | late | | v (m/s) | |----|------|----|--| | | | | lectes from extent their states space extent | | 80 | AUG | 89 | 0.33 | | 16 | AUG | 89 | 0.60 | ## C) AT TAGGING SITE - (FIG. A1-C) TRANSECT 2: measured on 11 Sept 89, flood abating -depth measured from W to E bank | d (m) | z (m) | substrate | d (m) | z (m) | substrate | |-------|-------|------------|-------|-------|------------| | 0.5 | 0.3 | silty sand | 30 | 1.3 | silty sand | | 1 | 0.8 | ii | 32 | 1.3 | 11 | | 2 | 1.0 | 11 | 34 | 1.1 | 11 | | 4 | 1.0 | 11 | 36 | 1.0 | 11 | | 6 | 1.0 | 11 | 38 | 1.1 | 11 | | 8 | 1.1 | 11 | 40 | 1.2 | 11 | | 10 | 1.2 | 11 | 42 | 1.1 | . 11 | | 12 | 1.3 | 11 | 44 | 1.0 | 11 | | 14 | 1.4 | 11 | 46 | 1.1 | 11 | | 16 | 1.6 | tt . | 48 | 1.1 | 11 | | 18 | 1.6 | II . | 50 | 1.0 | 11 | | 20 | 1.6 | H , | 51 | 0.7 | Ħ | | 22 | 1.6 | 11 | 52 | 0.7 | 11 | | 24 | 1.4 | 11 | 53 | 0.5 | 11 | | 26 | 1.3 | 11 | 54 | 0.2 | 11 | | 28 | 1.3 | 11 | | | | -current velocity measured approximately mid-channel v (m/s) -----0.66 FIGURE Al-C. Depth profile transects at tagging site APPENDIX 2. Sample data for 1112 charr captured in hoop nets, listed by tag number. Untagged fish that were dead-sampled are listed by a sample code; untagged fish that were live-sampled and released have no code and are ordered by date only. | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT | RECAP
DATE | |--|--|--|---|------------------|---|--|--|---------------------------------|-------------------------------------|--------------------------------------| | 70001
70002
70003
70004
70005
70006 | 890802
890803
890804
890805
890805 | 573
490
499
439
393
475 | 2350
1250
1450
940
600
950 | 890808
890809 | | 70062
70063
70064
70065
70066
70067 | 890814
890814
890814
890814 | 384
447
465
446
448 | 384
1050
1000
900
1050 | 890824 | | 70007
70007
70008
70009
70010 | 890806
890806
890806
890806 | 418
445
472
399 | 750
900
1220
. 730 | | | 70068
70069
70070
70071 | 890814
890814
890814
890814
890814 | 378
398
370
502
447 | 600
600
600
1400
850 | 890814 | | 70011
70012
70013
70014
70016 | 890806
890806
890806
890806 | 490
493
490 | 1220
1260
1090
900
1160
1050 | 890808 | | 70068
70069
70070
70071
70072
70073
70074
70075 | 890814
890814
890814
890814 | 443
478
455
440 | 900
1100
110
1050 | 890814
890815
890815
890815 | | 70017
70018
70019
70020 | 890807
890807 | 497
480
445 | 1050
1050
1050
1240
1000 | | | 70076
70077
70078
70079
70080 | 890814
890814
890814
890814
890814 | 457
497
555
442
532 | 1130
1390
1850
950
1400 | 890815
890815
890815 | | 70021
70022
70023
70024
70025 | 890807
890807
890807
890808
890808 | 438
470
395
379
487 | 900
1050
650
1050
1025 | 890809 | | 70081
70082
70083
70084
70085 | 890814
890814
890814
890814
890814 | 471
440
473
410
366 | 1120
960
1100
700
460 | 890815 | | 70026
70027
70028
70029
70030 | 890808
890809
890809
890809 | 535
460
590
525 | 1400
1100
2250
1450 | 890809 | | 70086
70087
70088
70089 | 890814
890814
890814
890814 | 405
450
495
440 | 800
960
1150
850 | 890815
890815 | | 70030
70031
70032
70033
70034 | 890809
890810
890810
890811
890811 | 487
490
441
470
491 | 850
1290
900
1140
1160 | | | 70090
70091
70092
70093
70095 | 890814
890814
890814
890814
890815 | 395
385
415
410
403 | 720
600
780
790
750 | | | 70035
70036
70037
70038
70039 | 890811
890811
890811
890812 | 470
450
470
402 | 1100
940
950
670 | | · | 70096
70097
70098
70099 | 890815
890815
890815
890815 | 414
497
521
552 | 700
1300
1700
1460 | 890816
890818
890815 | | 70039
70040
70041
70042
70043 | 890912
890812
890812
890812
890812 | 340
453
460
455
446 | 900
1170
960
950 | 890812 | | 70100
70101
70102
70103
70104 | 890815
890815
890815
890815 | 367
483
463
464
445 | 510
1200
910
1100
1000 | | | 70044
70045
70046
70047 | 890812
890812
890812
890812 | 352
444
429
423 | 500
1050
950
850 | 890812
890813 | |
70105
70105
70106
70107
70108 | 890815
890815
890815
890815
890815 | 445
442
420
452
454 | 950
750 | | | 70048
70049
70050
70051
70052 | 890813
890813
890813
890813
890813 | 455
437
464
478
493 | 900
1000
1130
1100
1200 | 890813
890815 | | 70109
70110
70111
70113
70114 | 890815
890815
890815
890815
890815 | 483
437
442
431
383 | 1160
825
760
960
540 | | | 70053
70054
70055
70056 | 890813
890813
890813
890813 | 450
438
439
270 | 1050
860
850
190 | 890815
890814 | | 70115
70116
70117
70118 | 890815
890815
890815
890815 | 480
455
376
530 | 1130
500
1500 | | | 70057
70058
70059
70060
70061 | 890813
890813
890813
890813
890813 | 402
439
295
364
500 | 650
800
200
500
1300 | | | 70119
70120
70121
70122
70123 | 890815
890815
890815
890815
890815 | 450
379
369
464
475 | 1000
600
600
1100
1050 | 890816
890817 | | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | | | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | |--|--|--|--|--------------------------------------|---|--|--|---|----------------------------| | 70126
70127
70128
70129 | 890816
890816
890816
890816
890816
890816 | 470
446
410
498
440 | 950
850
740
1300 | 890819 | 70187
70188
70189
70190 | 890820
890820
890820
890820 | 460
467
475
506 | 1150
1200
1300 | 890820 | | 70129
70130
70131
70132
70133
70134
70135
70137 | 890816 | 498
4407
4457
4420
437
460
469
382
290
463 | 1050
1000
760
910 | 890818 | 70193
70194 | 890820
890820
890820
890821
890821
890821
890821
890821 | 467
475
506
495
388
389
374
447
490
465 | 1300
700
650
550
1010 | 890824 | | 70135
70137
70138
70139
70139
70140 | 890816
890816
890816
890816
890816
890816 | 504
460
469
382
290 | 1400
1020
1100
600 | 890818 | 70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206 | 890825
890825 | 460
477
435 | 1010
1300
1200
700
1200
1100 | | | 70140
70141
70142
70143
70144 | 890816
890816
890816
890817
890817 | 463
466
426
457 | 950
950
700
950 | 890816 | 70201
70202
70203
70204 | 890825
890825
890825
890825
890825 | 469
394
440
445 | 1150
650
900
1000 | 890826 | | 70145
70146
70147
70148 | 890817
890817
890817
890817 | 466
426
457
376
438
430
450
508
440
5517
464
489
473 | 950
550
650
950
950
1330 | | | 890826 | 434 | 850
900
1450
1600
950 | 890829 | | 70150
70151
70152
70153 | 890817
890817
890817
890817
890817
890817 | 440
551
507
464 | 950 | 890817
890818 | 70210
70211
70212
70213 | 890826
890826
890827
890827
890827 | 515
435
528
500
445
476 | 950
1525
1450
4825
1175 | 890828
890827 | | 70154
70155
70156
70157 | 890817
890817
890818
890818
890818 | 489
473
490
472 | 1650
1150
1200
1460
1050
1250 | 890818 | 70214
70215
70216
70217 | 890827
890827
890827 | 385
485
485 | 900
550
1350
1250
1350 | | | 70158
70159
70160
70161
70162 | ячиятя | 433
474
405
496
487 | 760
1050
700
1320
1300 | 890818
890819
890818
890818 | 70218
70219
70220
70221
70222 | 890827
890827
890827
890827
890827 | 501
475
475
437
466 | 1150
1150
1050
950
1100 | 890828 | | 70163
70164
70165
70166
70167
70168 | 890818
890818
890818
890818
890818 | 490
472
433
474
405
496
487
401
464
413
325
366
443 | 700
1250
720
810 | 890819 | 70208
70209
70210
70211
70212
70213
70214
70215
70217
70218
70221
70222
70222
70223
70224
70225
70228
70229
70230 | 890827
890827
890827
890827
890827
890827
890827 | 466
470
395
475
416 | 1050
750
1300
750 | | | 70169
70170 | 890912
890818
890819
890819 | 444 | 500
960
1100 | 890819 | 70231 | 890827
890827
890827 | 473 | 1100
650
1300
1000 | 890827 | | 70172
70173
70174
70175 | 890819
890819
890819
890819
890819 | 420
460
454
380 | 950
800
1000
960
600 | 890819
890819
890820 | 70233
70234
70235
70236 | 890827
890827
890827
890828 | 483
513
442
460
495 | 1450
1450
1000
1200
1350 | 890828
890829 | | 70176
70178
70180
70181 | 890912
890912
890819
890819 | 305
435
468
465 | 900
950 | 890821 | 70237
70238
70239
70240 | 890828
890828
890828
890828 | 490
400
338
418 | 1150
650
550
925 | 890828
890828
890828 | | 70182
70183
70184 | 890819
890819
890819 | 503
440
460 | 1200
750
1000 | 890821
890820 | 70241
70242
70243 | 890828
890828
890828 | 470
405
346 | 600
400 | 890828
890828 | APPENDIX 2. Cont'd | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | |----------------------------------|----------------------------|--|--------------------|------------------|---|---|----------------------------|---|--------------------|---------------| | 70246
70248 | 890828
890828 | 315
474 | 400
1100 | 890829
890829 | | 70308
70309
70310 | 890829
890829 | 492
310 | 1250
400 | 890830 | | 70249
70250
70251 | 890828
890828 | 474
394
320
435 | 650
350 | 890829 | , | 70311 | 890829
890829 | 326
461 | 350
1050 | 890830 | | 70252
70253 | 890828
890828
890828 | 435
470
392 | 900
1050
550 | 890829
890000 | | 70311
70312
70313
70314 | 890829
890829 | 388
328 | 600
400
450 | 890830 | | 70254
70255 | 890828
890828 | 460
457 | 1200
1250 | | | 70315
70316 | 890829
890829
890829 | 325
290 | 400
250 | | | 70256
70257 | 890828
890828 | 305
305 | 500
400 | | | 70316
70317
70318
70319 | 890829
890830
890830 | 320
315 | 400
400 | | | 70258
70259 | 890828
890828 | 340
305 | 600
450 | 890830 | | 70319
70320
70321 | 890830
890830 | 328
319
325
290
320
315
350
320
330 | 400
300 | | | 7 0 260
70261
70262 | 890828
890828
890829 | 470
392
460
457
305
340
305
340
3291
429
435
310
319
316
422 | 600
750 | | | 70321
70322 | 890830
890830 | 330
325
320 | 450
400 | • | | 70263
70264 | 890829
890829 | 291
427 | 450
250
750 | 890829 | | 70322
70323
70324
70325
70326
70327
70328 | 890830
890830 | 320
320
205 | 400
400
300 | | | 70265
70266 | 890829
890829 | 435
310 | 1050
350 | 890829 | | 70326
70327 | 890830
890830
890830 | 320
295
297
315 | 250
450 | | | 70267
70268 | 890829
890829 | 308
296 | 300
250 | | | 70328
70329
70330 | 890830
890830 | 295
290 | 250
250 | | | 70269
70270 | 890829
890829 | 319
319 | 300
350 | 890829 | | 70330
70331
70332 | 890830
890830 | 295
290
323
330 | 410
450 | 890830 | | 70271
70272
70273 | 890829
890829
890829 | 316
422 | 450
800 | 890830 | | 70332
70333
70334
70335 | 890830
890830 | 458 | 1050
430 | | | 70274
70275 | 890829
890829 | 385
420 | 450
600
750 | 890829 | | 70334
70335
70336 | 890830
890830
890830 | 327
300
328 | 350
450
500 | | | 70276
70277 | 890829
890829 | 359
385
420
540
300
397
425 | 1950
250 | 890830 | | 70336
70337
70338 | 890830
890830 | 330
318
304 | 400
250 | | | 70278
70279 | 890829
890829 | 397
425 | 600
750 | | | 70338
70339
70340 | 890830
890830 | 330
305 | 450
400 | 890900 | | 70280
70281
70282 | 890829
890829
890829 | 347
385
334
295
455
275 | 450
550 | | | 70341
70342 | 890830
890830 | 418
320
335 | 800
350 | | | 70283
70284 | 890829
890829 | 295
455 | 550
260
950 | | | 70344
70345 | 890830
890830
890830 | 335 | 400
450
1050 | 890901 | | 70285
70286 | 890829
890829 | 275
305 | 250
350 | | | 70343
70344
70345
70346
70347
70348 | 890830
890830 | 445
333
329 | 550
400 | 030301 | | 70287
70288 | 890829
890829 | 305
281
478 | 250
1150 |
890830 | | 70348
70349
70350 | 890830
890906 | 340
385 | 500 | | | 70289
70290
70291 | 890829
890829 | 446
310
334 | 900
400
450 | | | 70350
70351 | 890830
890830 | 505
485 | 1450
1200 | | | 70292
70293 | 890829
890829
890829 | 309
331 | 450
450
500 | | | 70352
70353
70354 | 890906
890830
890906 | 335
315
320 | 400 | | | 70294
70296 | 890829
890829 | 319
305 | 400
250 | | | 70355
70356 | 890830
890830 | 324
325 | 400
350 | | | 70297
70298 | 890829
890829 | 395
280 | 700
250 | | | 70357
70358 | 890906
890830 | 310
287 | 350 | | | 70299
70300
70302 | 890829
890829
890829 | 345
407
320 | 550
850
450 | 890830
890830 | | 70359
70360
70361 | 890830
890830 | 410
300
285 | 750
350 | 890830 | | 70303
70304 | 890829
890829 | 441
430 | 1000
1050 | | | 70362
70363 | 890830
890830
890830 | 285
295
285 | 250
250
250 | | | 70305
70306 | 890829
890829 | 335
370 | 500
450 | | | 70364
70365 | 890830
890830 | 276
305 | 200
400 | | | 70307 | 890829 | 300 | 250 | | | 70366 | 890830 | 468 | 1150 | 890830 | APPENDIX 2. Cont'd | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | |-------------------------|------------------|-------------------|---------------|---------------|-------------------------|--------------------------------------|--------------------|---------------|---------------| | 70368
70369 | 890830
890830 | 290
400
325 | 270
750 | | 70434
70435 | 890831
890831 | 335
340 | | | | 70370
70371 | 890830
890830 | 325
329 | 550
410 | | 70436
70437 | 890831 | 380
310 | | 890831 | | 70372
70373 | 890830
890830 | 329
299 | 400 | | 70437
70438
70439 | 890831
890831
890831
890831 | 335 | • | 890831 | | 70374
70375 | 890830 | 305
298 | 350
350 | | 70439 | 890831 | 335
345 | | | | 70376 | 890830
890830 | 285
338 | 300 | | 70441
70442 | 890831
890831 | 310
300 | | 890831 | | 70377
70379 | 890830
890830 | 308 | | | 70443
70444 | 890831
890831 | 290 | | | | 70380
70381 | 890830 | 317
307 | | | 70445 | 890831 | 297
315 | | | | 70381
70382
70383 | 890830
890830 | 300
310 | | | 70446
70447 | 890831
890831 | 515
315 | | | | 70383
70384 | 890830
890830 | 333
317 | | | 70448
70449 | 890831
890831 | 317
321 | | | | 70384
70385
70386 | 890830
890830 | 393
327 | | | 70450 | 890831 | 283 | | | | 70387 | 890830 | 320 | | | 70451
70452 | 890831
890831
890831 | 278
340 | | | | 70388
70389 | 890830
890830 | 473
315 | | | 70453 | 890831
890831 | 315
301 | | | | 70390
70391 | 890830
890830 | 329
309 | • | ٠ | 70454
70456 | 890831 | 378 | | | | 70392 | 890830 | 279 | | | 70457
70458 | 890831
890831 | 305
423 | | 890901 | | 70393
70395 | 890830
890830 | 308
273 | | | 70459
70460 | 890831
890831 | 320
330 | | | | 70396
70397 | 890830
890830 | 310 | | | 70461 | 890831 | 347
335 | | | | 70398 | 890830 | 319
320 | | | 70464
70466 | 890831
890831 | 335
296 | | | | 70399
70400 | 890830
890830 | 310
310 | | 890831 | 70467
70468 | 890831
890831 | 296
325
327 | | | | 70401
70402 | 890831
890831 | 310
390 | | 000001 | 70469 | 890831 | 325 | | | | 70403 | 890831 | 415
303 | | 890831 | 70470
70472 | 890901
890901 | 330
400 | | | | 70404
70405 | 890831
890831 | 368
326 | | | 70473
70474 | 890901
890901 | 348
333 | | | | 70406
70407 | 890831
890831 | 291
413 | | | 70475 | 890901
890901 | 370
379 | 550 | | | 70408 | 890831 | 311 | | | 70476
70477 | 890819
890819
890819 | 293 | 550
250 | | | 70409
70410 | 890831
890831 | 345
330 | | | 70478
70479 | 890819
890819 | 436
401 | 850
750 | | | 70411
70412 | 890831
890831 | 314
290 | | | 70480 | 890819 | 421 | 750 | | | 70413 | 890831 | 306 | | | 70481
70482 | 890901
890901 | 315
330 | | | | 70414
70415 | 890831
890831 | 295
278 | | | 70483
70484 | 890901
890901 | 311
302 | | | | 70416
70417 | 890831
890831 | 340
298 | | | 70485
70486 | 890901
890901 | 314 | | | | 70418 | 890831 | 325 | | | 70487 | 890901 | 332
310 | | | | 70419
70420 | 890831
890831 | 340
305 | | | 70488
70489 | 890901
890901 | 325
3 10 | | | | 70421
70422 | 990831
890831 | 320
325 | | | 70490
70491 | 890901
890901 | 285
485 | | 890902 | | 70423 | 899831 | 335 | | | 70492 | 890901 | 345 | | 890902 | | 70424
70425 | 890831
890831 | 320
290 | | | 70493
70494 | 890901
890901 | 318
322 | | | | 70426
70427 | 890831
890831 | 329
330 | | 890901 | 70495
70496 | 890901
890901 | 302
335 | | 890912 | | 70428
70429 | 890831 | 322 | | | 70498 | 890901 | 335 | | 030312 | | 70429 | 890831
890831 | 335
465 | | | 70499
70500 | 890901
890901 | 316
319 | • | | | | | | | | | | | | | APPENDIX 2. Cont'd | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT RECAP
(g) DATE | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | |---|--|---------------------------------|--------------------------|---|--|---------------------------------|---------------|------------------| | 70505
70506
70507
70508
70509 | 890901
890901
890901
890901
890901 | 332
325
301
325
302 | | 70567
70568
70569
70570
70571 | 890902
890902
890902
890902
890902 | 350
310
320
320
360 | | 890915 | | 70510
70511
70512
70513
70514 | 890901
890901
890901
890901
890901 | 400
316
302
351
348 | 890903 | 70572
70573
70574
70575
70576 | 890902
890902
890902
890902
890902 | 350
325
325
310
315 | | 890903 | | 70515
70516
70517
70518
70519 | 890901
890901
890901
890901
890901 | 321
388
310
346
327 | | 70575
70576
70577
70578
70579
70580
70581 | 890902
890902
890902
890902
890902 | 330
405
440
323
415 | | 890903 | | 70520
70521
70522
70524
70525 | 890901
890901
890901
890901
890901 | 326
323
313
312
302 | 890904 | 70582
70583
70584
70585
70586 | 890902
890902
890902
890902
890902 | 320
415
350
325
335 | | 030303 | | 70526
70527
70528
70529
70530 | 890901
890901
890901
890901
890901 | 310
303
332
337
322 | | 70587
70588
70589
70590
70591 | 890902
890902
890902
890902
890902 | 320
308
345
330
320 | | | | 70532
70533
70534
70535
70536 | 890901
890901
890901
890901
890901 | 330
345
332
432
333 | 890902 | 70592
70593
70594
70595
70596 | 890902
890902
890902
890902
890902 | 300
317
305
317
317 | | | | 70537
70538
70539
70540
70541 | 890901
890901
890901
890901
890901 | 297
310
323
319
298 | | 70597
70598
70599
70600
70601 | 890902
890902
890902
890902 | 320
330
333
328 | | | | 70542
70543
70544
70547
70548 | 890901
890901
890901
890901
890901 | 318
315
305
267 | | 70601
70602
70603
70604
70605 | 890902
890902
890902
890902 | 340
305
320
300
300 | | | | 70549
70550
70551
70552 | 890901
890901
890901
890901 | 411
330
325
312
285 | 890900 | 70606
70607
70608
70609
70611 | 890902
890902
890902
890902 | 335
315
320
332
318 | | | | 70553
70554
70555
70556
70557 | 890901
890901
890901
890902
890902 | 317
314
302
315
347 | 890900 | 70614
70615
70616 | 890902
890902
890902
890902 | 334
359
345
349
401 | | 890904
890903 | | 70558
70559
70560
70561
70562 | 890902
890902
890902
890902 | 310
335
355
310
350 | | 70617
70618
70619
70620
70621 | 890902
890906
890902
890902 | 338
350
324
482
349 | | | | 70563
70564 | 890902
890902 | 320
295 | | 70622
70623 | 890902
890902 | 291
324 | | | APPENDIX 2. Cont'd | TAG #/ | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | TAG #/
CODE | DATE
TAGGED | FORK LN
(mm) | RND WT | RECAP
DATE | |---|--|---|---------------|------------------|--|--|---|--------|---------------| | 70525
70627
70628
70629
70630
70631
70632
70633
70634 | 890902
890902
890902
890902
890902
890902
890902
890902 | 298
490
330
402
320
293
320
317
334 | | 890903 | 70690
70691
70692
70693
70694
70695
70696
70697
70698 | 890903
890903
890903
890903
890903
890903 | 330
345
325
330
520
360
295 | | 890903 | | 70635
70636
70637
70638
30639
70640
70641
70642 | 890902
890902
890902
890902
890902
890902
890902
| 305
475
330
305
280
301
287
434 | | | 70699
70699
70700
70701
70702
70703
70704
70705
70706
70707 | 890903
890903
890903
890903
890903
890903
890903
890903 | 410
430
330
310
330
323
323
305
335 | | | | 70643
70644
70645
70646
70647
70648
70649
70650 | 890902
890902
890902
890902
890902
890902
890902 | 330
325
341
305
302
325
314
315 | | 890904 | 70707
70708
70709
70710
70711
70712
70713
70714 | 890903
890903
890903
890903
890903
890903 | 354
354
320
300
315
425
330
300 | | | | 70651
70652
70653
70654
70655
70656
70657 | 890902
890902
890902
890902
890902
890902 | 398
360
341
320
430
282
311 | | | 70715
70716
70717
70718
70719
70720
70721 | 890903
890903
890903
890903
890903
890903 | 310
375
420
315
305
330
317 | | 890903 | | 70658
70659
70660
70661
70662
70663
70664 | 890902
890902
890902
890902
890902
890902 | 308
345
357
335
387
291
333 | | 890902 | 70722
70723
70724
70725
70726
70727
70728 | 890903
890903
890903
890903
890904
890904 | 323
315
312
300
320
412
407 | | 890905 | | 70665
70666
70667
70668
70669
70670
70671 | 890902
890902
890902
890902
890902
890902 | 431
295
323
394
301
320
318 | | 890904
890904 | 70729
70730
70731
70732
70733
70734
70735 | 890904
890904
890904
890904
890904
890904 | 461
343
325
320
407
325
309 | | 890904 | | 70672
70673
70674
70676
70677
70678
70679 | 890902
890902
890902
890902
890902
890902 | 326
306
335
295
280
273
309 | | 890903
890900 | 70736
70737
70738
70739
70740
70741
70742 | 890904
890904
890904
890904
890904
890904 | 358
321
320
315
318
320
320 | | | | 70680
70681
70682
70683
70684
70685
70686 | 890903
890903
890903
890903
890903
890903 | 520
320
340
295
345
345
450 | | 890903
890904 | 70743
70744
70745
70746
70747
70748
70749 | 890904
890904
890904
890904
890904 | 335
308
315
519
319
421 | | 890905 | | 70687 | 890903 | 390 | | 050304 | 70750 | 890904
890904 | 337
373 | • | 890904 | APPENDIX 2. Cont'd | TAG #/ | DATE
TAGGED | FORK LN (mm) | RND WT | RECAP
DATE | TAG #/
CODE | DATE
TAGGED | FORK LN
(note) | RMD WI | RECAP
DATE | |---|--|---|--------|------------------|---|--|---|--------|---------------| | 70753
70754
70755
70756
70757
70758
70759 | 890904
890904
890904
890904
890904 | 460
311
337
308
407
360 | | 890905 | 70813
70814
70815
70816
70821
70822
70823 | 890905
890905
890905
890905
890905 | 330
340
310
340
310
347 | | | | 70760
70761
70762
70763
70764
70765 | 890904
890904
890904
890904
890904
890904 | 319
335
311
339
325
318 | | | 70823
70824
70825
70826
70827
70829
70829 | 890905
890905
890905
890905
890905
890905 | 370
332
320
324
310
285
330 | | 890905 | | 7 9 766
70767
70768
70769
70770
70771 | 890904
890904
890904
890904
890904 | 318
350
335
404
340
320
495 | | 890905
890905 | 70830
70831
70832
70833
70834
70835 | 890905
890905
890905
890905
890905
890905 | 278
300
424
328
330
320 | | 890906 | | 70772
70773
70774
70775
70776
70777
70778 | 890904
890904
890904
890904
890904
890904 | 340
325
330
350
425
350
300 | | 890905 | 70936
70837
70838
70839
70840
70841
70842 | 890905
890905
890905
890905
890905
890905 | 335
436
345
360
320
330
300 | | 890906 | | 70779
70780
70761
70782
70783
70784
70785 | 290904
890904
890904
890904
890904 | 315
365
330
325
315
300 | | | 70843
70844
70845
70846
70847
70848 | 890905
890905
890905
890905
890905 | 355
350
330
350
330
320 | | 890905 | | 70785
70786
70787
70788
70789 | 890904
890905
890905
890905
890905
890905 | 305
330
345
230
335
335
340 | | 890905
890906 | 70849
70850
70851
70853
70855
70856
70857 | 890905
890906
890906
890906
890906
890906 | 313
320
340
327
452
320
320 | | | | 70790
70791
70792
70793
70794
70795
70796 | 890905
890905
890905
890905
890905
890905 | 345
325
330
300
336
375 | | 890906 | 70858
70859
70860
70861
70863
70864 | 890906
890906
890906
890906
890906 | 317
347
354
295
315
308 | | 890907 | | 70797
70798
70799
70800
70801
70802 | 890905
890905
890905
890905
890905 | 405
325
320
330
325
325 | • | | 70865
70866
70867
70868
70869
70870 | 890906
890906
890906
890906
890906 | 310
320
328
330
310
342 | , | | | 70803
70804
70805
70806
70807
70808
70809 | 890905
890905
890905
890905
890905
890905 | 315
314
315
320
295
320
290 | | | 70871
70872
70873
70874
70875
70876
70877 | 890906
890906
890906
890906
890906
890905 | 307
301
290
335
331
318
480 | | 890306 | | 70810
70811
70811
70812 | 890905
890905
890905 | 300
370
335 | | | 70878
70879
70880 | 890906
890906
890906 | 318
340
342 | | | APPENDIX 2. Cont'd | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT
(g) | RECAP
DATE | TAG #
CODE | / DATE
TAGGED | FORK IN (mm) | KND At | RECAP
DATE | |--|--|---|---------------|------------------|--|--|---|--------|------------------| | 70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894 | 890906
890906
890906
890906
890906
890906
890906
890906
890906 | 322
325
325
327
367
358
350
319
304
317
309 | | 890906 | 7094
7094
7095
7095
7095
7095
7095
7095
7095 | 9 890907
0 890907
1 890907
2 890907
3 890907
4 890907
5 890907
7 890907
8 890907 | 395
436
495
355
328
345
317
443
346
395
410 | | 890912 | | 70895
70898
70898
70899
70200
70901
70902
70903 | 890906
890906
890906
890906
890906
890906 | 305
415
470
345
340
305
305
320 | | | 7096
7096
7096
7096
7096
7096 | 0 890907
1 890907
2 890907
3 890907
4 890907
5 890907
6 890907 | 340
333
330
312
320
323
443
327
300 | | 890910 | | 70904
70905
70906
70907
70908
70909
70910
70911 | 890906
890906
890906
890906
890906
890906
890906 | 320
325
405
335
285
330
305
315
307 | | 890907 | 7096
7096
7097
7097
7097
7097
7097 | 88 890911
89 890911
10 890911
11 890911
12 890911
14 890911
15 890911 | 405
445
335
413
298
365
330
345
345 | 1000 | 890912 | | 70912
70913
70914
70915
70916
70917
70918
70919
70920 | 890906
890907
890907
890906
890907
890907
890907 | 323
334
309
295
350
433
415
420 | | 890908 | 7097
7097
7098
7098
7098
7098
7098 | 77 890912
78 890912
79 890912
80 890912
81 890912
82 890912
83 890912 | 320
345
310
442
340
311
405
332 | | | | 70921
70922
70923
70924
70925
70926
70927
70928
70929 | 890907
890907
890907
890907
890907
890907
890907 | 357
340
325
315
329
310
295
315
360 | | 890909 | 7098
7098
7098
7098
7099
7099
7099 | 866 890912
877 890912
888 890912
899 890912
900 890912
91 890912
92 890912 | 415
340
410
345
352 | | 890913
890913 | | 70930
70931
70932
70933
70934
70935
70937
70938 | 890907
890907
890907
890907
890907
890907
890907 | 470
355
330
340
410
325
300
350
335 | | 890908
890911 | 7099
7099
7099
7100
ACOO
ACOO
ACOO | 97 890912
98 890912
99 890912
00 890912
01 890808
22 890814 | 350
330
335
405
448
480
477 | | | | 70939
70940
70941
70942
70943
70944
70945
70947 | 890907
890907
890907
890907
890907
890907
890907 | 340
345
330
310
315
406
430
475
517 | | 890907
890908 |
ACO
ACO
ACO
ACO
ACO
ACO
ACO
ACO
ACO
ACO | 78 890818
94 890819
00 890820
38 890825
46 890827
59 890828
60 890828 | 445
284
300
318
290
323
290
231 | · | | APPENDIX 2. Cont'd | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT | RECAP
DATE | TAG #/
CODE | DATE
TAGGED | FORK LN (mm) | RND WT | RECAP
DATE | |--|--|--|--------|---------------|----------------|--|--|--------|---------------| | AC1727
AC1777
AC1977
AC1996
AC1997
AC1997
AC22123
AC22123
AC22124
AC22124
AC21000000000000000000000000000000000000 |
8908331
8908331
8908331
8908331
8908331
8908331
890901
8909002
8909002
8909002
8909002
8909002
8909002
8909002
8909002
8909002
8909002
8909003
8909003
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903
890903 | 38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
381788
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178
38178 | | | | 33344444444444444444444444444444444444 | 353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
353225
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
35325
3532 | | |